Study with us

La Trobe University is committed to delivering distinctive and high-quality degrees that incorporate the needs of businesses and future employers for medicinal agriculture.

The ARC MedAg Hub recognises the importance of investing in education and training that prepares graduates for a range of careers in industry, from both the perspective of students and employers. This underpins the ARC MedAg Hub’s Capacity Building Platform’s key goal: to enhance industry human capital by developing, co-ordinating and delivering new courses focused directly on challenges faced by the medicinal agriculture industry.

 

 

ARC Research Hub for Medicinal Agriculture PhD Scholarships.

Please note: these scholarships are open to Australian and New Zeland Citizens and Permanent Residents only.

$28,092 p/a for 3.5 years. Fee relief additional.

 

 

Current Available research projects

  1. Cannabis flowering.
  2. Structural genomics of cannabis enzymes.
  3. A multi-omics atlas of cannabis tissues.
  4. Is transcriptional regulation of specialized metabolism conserved across diverse species?
  5. Manipulation of cannabinoid production in cannabis.
  6. Development of solvent extraction technologies for the selective extraction of cannabinoids and terpenes.
  7. Healthy plants for human health: tackling plant disease in medicinal cannabis production.
  8. Prediction and evaluation of plant traits through the application of machine learning algorithms on hyperspectral phenomics imaging data.
  9. Micro-climate modelling of in-door growing conditions of medicinal crops using sensor fusion.

 

The ARC Research Hub for Medicinal Agriculture (ARC MedAg Hub) works to apply knowledge and leading-edge innovation by transforming high quality, plant-derived therapeutics production into an integrated industry spanning primary producers and manufacturers. The ARC MedAg Hub is a multidisciplinary collaboration conducting pre-clinical research in medicinal agriculture amongst researchers at La Trobe University, The University of Melbourne, Olivia Newton-John Cancer Research Institute, in collaboration with funding agency the Australian Research Council and leading industry partners Cann Group Limited, Hexima, Photon Systems Instruments, SensaData, UTT BioPharma, Bio Platforms Australia and Palo Alto Research Center Inc.

The ARC MedAg Hub is offering PhD Research Scholarships for outstanding, high achieving and motivated candidates to undertake research aimed at improving the profitability and sustainability of medicinal agriculture for primary producers and adding value for pharmaceutical manufacturers and end-users. Applicants should have an interest in subjects related to medicinal agriculture or plant biology, such as; breeding, genetics, high-throughput imaging and phenomics, genome regulation, metabolomics, integrative ‘omic analysis, biochemistry, secondary/specialized metabolism.

 

Benefits of the Scholarship:

  • •  a La Trobe Research Scholarship for three and a half years, with a value of $28,092.00 per annum, to support your living costs (2020 rate)
  • •  a fee-relief scholarship for up to four years to undertake a PhD at La Trobe University
  • •  opportunities to work with La Trobe’s outstanding researchers, and have access to our suite of professional development programs.
  • •  opportunity to be involved in an innovative industry transformation hub involving industry partners

 

Eligibility Criteria:

To be eligible to apply for this scholarship, applicants must:

  • •    meet the entrance requirements for the proposed course (use this link on the words ‘proposed course’ https://www.latrobe.edu.au/study/apply/research/doctor)
  • •    not be receiving another scholarship greater than 75 per cent of the stipend rate for the same purpose.

In selecting successful applicants, we prioritise applications from candidates who:

  • •    will be enrolled full-time and undertaking their research at a La Trobe University campus
  • •    have completed a Masters by Research or other significant body of research, such as:
  • •    an honours research thesis, or 
  • •    lead authorship of a peer-reviewed publication, assessed at a La Trobe Masters by research standard of 75 or above
  • •    are Australian or New Zealand citizens or Australian permanent resident

 

How to Apply:

If you wish to apply for an ARC MedAg Hub PhD Scholarship, follow these steps:

  • •  Please contact the ARC MedAg Hub at  medaghub@latrobe.edu.au for any further details about the projects and your suitability.
  • •  When you received in-principle agreement for supervision, complete and submit your application to the La Trobe Graduate Research School by 31 October 2020 for admission into La Trobe’s PhD program, indicating for which ARC MedAg Hub PhD Scholarship program you wish to be considered.
  • •  The University will carefully review your application and consider you for these scholarships.
  • •  It is anticipated that the successful applicants will commence candidature in Semester 1, 2021.

 

Conditions:

  • •  Open to Australian and New Zealand Citizens / Australian Permanent Residents only.
  • •  While you may express interest in being considered for multiple projects, only one scholarship will be awarded.
  • •  Potential candidates may be required to be interviewed as part of the application process.
  • •  Due to the nature of the research involved, confidential and security criteria will need to be agreed to before offers can be secured.

 

Who to contact for further information: For further information about these scholarships or to discuss your suitability, please email medaghub@latrobe.edu.au.

 

 

Projects

 

Title:

  • 1. Cannabis flowering.

Theme description:

Medicinal compounds in cannabis are primarily produced in flowers. The time of flowering is important for both the amount of floral material produced and how many harvests can be collected in a year, yet we know relatively little about how this process is regulated in cannabis. This project will identify regulators of flowering time and investigate pathways to generate cannabis varieties with optimised flowering behaviour.

  Index >

 

Title:

  • 2. Structural genomics of cannabis enzymes.

Theme description:

Despite being the foundation of a multi-billion-dollar global industry, scientific knowledge and research on cannabis is lagging compared to other high-value crops. The most valuable cannabis product today is the terpene- and cannabinoid-rich resin with its various psychoactive and medicinal properties yet there is very little is known about the structure and function the enzymes that synthesis these compounds. This project will use structural genomics to define the structure and function of terpene synthases and O-methyltransferases involved in producing the unique medical properties of cannabis.

  Index >

 

Title:

  • 3. A multi-omics atlas of cannabis tissues.

Theme description:

Accurate regulatory models allow complex systems to be understood and key functional components to be predicted a priori. This project will generate a multi-omic atlas of cannabis tissues that encompasses transcript, proteomic, phosphoproteomic and orfeomic data. It will then explain the differing activity of specialized metabolism between tissues by generating predictive regulatory models and wet-bench testable hypotheses.

  Index >

 

Title:

  • 4. Is transcriptional regulation of specialized metabolism conserved across diverse species?

Theme description:

Plants produce thousands of specialized metabolites as an adaptation to interacting with their environment. These compounds vary widely between plant species, highly dependent on their biological function and the specific challenges faced by the plant species. Transcriptional regulation of the pathways synthesising specialized metabolites is thought to be dominated by MYB and bHLH transcription factors, but has been well characterized in very few species. This project will make use of the recent wealth of genomic and transcriptomic data across a wide range of species to predict then validate the role of master regulatory transcription factors, assessing the degree of functional conservation across distantly related species.

  Index >

 

Title:

  • 5. Manipulation of cannabinoid production in cannabis.

Theme description:

Food, spinnable fibre as well as valuable secondary metabolites are derived from cannabis. This project will reveal the molecular mechanisms by which carbon partitioning into various organs and chemical components is regulated during plant growth and development.

  Index >

 

Title:

  • 6. Development of solvent extraction technologies for the selective extraction of cannabinoids and terpenes.

Theme description:

Development of effective and efficient separation technologies for cannabis extraction is key to the widespread deployment of cannabis derived products for medicinal purposes. This project will develop liquid-liquid separation processes to achieve this goal using tools including thermodynamic software packages such as COSMO-SAC, in combination with laboratory and pilot plant trials.

  Index >

 

Title:

  • 7. Healthy plants for human health: tackling plant disease in medicinal cannabis production.

Theme description:

Diseases can reduce yield and contaminate medicinal cannabis products with pathogens and agrichemicals. This project aims to control fungal diseases without the use of agrichemicals. The project aims to develop surveillance techniques for early warning of pathogen presence, enabling timely interventions. It will determine whether metabolite engineering of cannabis affects natural disease resistance.

  Index >

 

Title:

  • 8. Prediction and evaluation of plant traits through the application of machine learning algorithms on hyperspectral phenomics imaging data.

Theme description:

With the establishment of the large-scale phenotyping capacity at La Trobe University, an abundance of imaging data is expected to be generated using RGB, thermal, fluorescent and hyperspectral imaging systems. Compared to other imaging techniques, a hyperspectral approach substantially increases data size as well as the complexity of evaluation. It becomes increasingly difficult for humans, even with sophisticated data processing algorithms, to synthesise information in order to successfully predict plant trait trends. This project aims to investigate and augment the latest research in neural networks/machine learning algorithms to better predict plant development and evaluate plant traits based on the visible and near-infrared hyperspectral data. 

  Index >

 

Title:

  • 9. Micro-climate modelling of in-door growing conditions of medicinal crops using sensor fusion.

Theme description:

The yield and potency of medicinal agriculture crops can be affected by the microclimate of individua  l plants within indoor cultivation practices. The research will involve undertaking targeted research to develop microclimate modelling using sensor fusion and developing a complimentary expert systems model for use in real-time monitoring and control systems of desired growing conditions. The work will include integration of sensor systems developed by our Hub partners SensaData and PSI, and subsequent development of computation models for microclimate that are co-developed in collaboration with agricultural scientists.

Special condition: The PhD candidate will need to have a background in either Electronic Engineering or Computer Science.

Index >

 

 

PhD Scholarships

PhD Scholarships available to outstanding, high achieving and and motivated students. If you are interested in applying for our scholarships, please email us at medaghub@latrobe.edu.au.